Metal alloys have had proven effectiveness, durability, and longevity, but the desire for aesthetic, tooth-colored restorations has made the use of ceramic materials more popular in contemporary dentistry. The brittle nature of ceramics–they “may fracture without warning when flexed excessively”12–
and the potential for its hardness to cause wear damage to opposing teeth have led to concerns about longevity.1, 17, 18 But the benefits of ceramics for dental restorations–aesthetics, chemical inertness, and wear-resistance–have made ceramics a quickly evolving field of dental restorative science.12
The ISO and ANSI/ADA standards for dental ceramics both classify ceramics according to their intended clinical use (or function). They use 5 classes based on matching the recommended clinical indications with minimum mechanical strength and chemical solubility requirements (Table 4).19
Table 4: ANSI/ADA Standard No. 69 (ISO 6872)19
Class
|
Indications
|
Minimum Flexural Strength
|
1
|
(a) Monolithic ceramic for single-unit inlays, onlays, veneers,
anterior prostheses; (b) coverage of substructure.
|
50
|
2
|
(a) Monolithic ceramic for adhesively cemented single crowns, anterior and
posterior prostheses;
(b) substructure for anterior or posterior prostheses.
|
100
|
3
|
(a) Monolithic ceramic for non-adhesively cemented single crowns,
anterior or posterior fixed prostheses; and non-molar three-unit fixed prostheses.
(b) Substructure ceramic for single unit anterior or posterior prostheses
and non-molar three-unit fixed prostheses.
|
300
|
4
|
(a) Monolithic ceramic for three-unit prostheses with molar restoration;
(b) Substructure for three-unit fixed prostheses with molar restoration.
|
500
|
5
|
Substructure for multi-unit fixed prostheses
|
800
|
Silicate glasses, porcelains, glass-ceramics, and polycrystalline ceramics are all types of ceramics used in dentistry.12 Feldspathic porcelains were the first all-ceramic restoration material, but despite their high translucency, they are inherently brittle,12, 20-22 with low flexural strength (50 – 100MPa). Beginning in the 1950s feldspathic porcelain was fused to metal to strengthen the restoration (see Metal-Ceramics section, below).6 The discovery of leucite within feldspathic porcelain in the 1960s allowed dispersion strengthening of the porcelain as well as modification of its coefficient of thermal expansion.23 By the 1980s development began of high strength glass-ceramics that could be fabricated from pressed ingots rather than powder-liquid mixtures. Around this same time, improvements in computer-aided design software, the advent and proliferation of milling devices and 3D wax printers, and improvements in dental zirconia and glass ceramics have propelled the digitization of laboratory procedures for dental ceramics.12 Several classes of ceramic materials are currently widely utilized for CAD/CAM processing: zirconia, glass ceramics, and resin-ceramic composites.
Zirconia Ceramics
Zirconia ceramics have a natural white-colored appearance and reportedly high flexural strength (≥900 MPa) and fracture toughness (~9-13 MPa m1/2).12, 21, 22 Zirconia is metastable for three possible atomic arrangements, monoclinic, tetragonal, and cubic phase. Yttria is added to zirconia to stabilize the tetragonal phase of zirconia at room temperature and therefore toughen it.12 Tetragonal zirconia may undergo a process known as transformation toughening which allows the material stop the progression of a forming crack.12 Increasing yttria content further will stabilize the more translucent cubic phase, and zirconia restorative materials are usually characterized by the amount of yttria introduced.24 Zirconia has been shown to be highly biocompatible (having been in use as an orthopedic biomaterial since the 1970s),12 and provides resistance to bacterial adhesion.21
Framework zirconia and Full-contour zirconia are viable alternatives to PFM and full metal restorations, with high flexural strength (1000-1400 MPa). Framework zirconia, usually composed of 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP), is often used in anterior and posterior multi-unit bridges, and veneered with feldspathic porcelain or glass-ceramics for a natural tooth-like appearance due to its opacity.25 Full-contour zirconia, also commonly consisting of 3Y-TZP, has similar flexural strength and fracture resistance, but better translucency due to its lower alumina content, allowing it to be used as a monolithic restoration.22 Polished zirconia surfaces have been shown to be more wear resistant to opposing tooth structure than the feldspathic porcelain used on metal ceramic crowns.22
A recent study (2020) has reported lower fracture toughness than previously published figures, averaging 5.64 MPa m1/2 for 3Y-TZP when using focused ion beam (FIB) milling rather than saw blade-notched specimens.26
A 5 mol% yttria stabilized high-translucency zirconia (5Y-ZP), is more translucent than previous generations of zirconia due to the increased content of the optically isotropic cubic phase and is less susceptible to low temperature degradation.22 However, it is more brittle and has lower flexural strength (500 – 700 MPa).27 A recent analysis (2018)27 found no significant difference between 5Y-ZP and other tested ceramic materials in opposing tooth enamel wear and bond strength to the adhesive cement.27
A 2021 ADA ACE Panel survey found that, among respondents (n = 277), the most common uses of zirconia for fixed restorations were posterior crowns and bridges (98% and 78%, respectively), followed by anterior crowns and bridge (61% and 57%), and as custom implant abutments (51%).28 Zirconia was much less frequently used for onlays, veneers, and inlays (12%, 12%, and 6%, respectively).28 Please see our ACE Panel Report on Zirconia restorations for more information.
Glass-based Systems
Leucite-based glass-ceramics have nearly similar translucency as feldspathic porcelain but can have higher strength (over 100 MPa) because of increased levels of leucite.12 Use of leucite-based ceramics is limited to aesthetic anterior bonded veneers and crowns, but lithium disilicate ceramics (LDS), with higher flexural strength (250 – 400 MPa) and availability in both low, medium, and high translucency forms, allow a wider range of anterior indications.12, 22 There are some issues with wear compared to zirconia,12, 27 and with roughness in milled LDS, but it is stronger than other glass-based ceramics and more translucent than any zirconia.12 Lithium silicate (LS) and zirconia-reinforced lithium silicate (ZRS) are available alternatives with similar properties and indications; ZRS contains 10% dissolved zirconia.29
Resin-matrix Composites
Resin-matrix materials as indirect restorations have the advantage of being easy to manipulate.12, 30, 31 Resin-matrix composites are capable of higher degrees of filler loading and polymerization than direct composites and, because they are cured outside the mouth, polymerization shrinkage does not occur as it does in direct resin-matrix composite restorations.12 CAD/CAM resin-matrix composite blocks for indirect restorations can be more biocompatible than direct composite counterparts, often made with alternative, non-toxic resins and more resistance to degradation and leakage (see Biocompatibility Concerns section, below).30 They generally consist of a urethane dimethacrylate (UDMA), triethylene glycol dimethacrylate (TEGMDA), and/or bisphenol A-glycidyl methacrylate (Bis-GMA) matrix with silica, silica-based glasses, glass-ceramics, zirconia, and/or zirconia-silica ceramic fillers.30, 31 Resin-matrix composites in the form of composite blocks have more flexibility to masticatory stress, with lower abrasivity to opposing teeth, but lower flexural strength (100 - 200 MPa) and fracture toughness (0.8 - 1.2 MPam1/2) than typical CAD/CAM blocks. Due to their lower strength, they are primarily indicated as an alternative for inlays, onlays, and single unit crowns.12